
1 Zorn’s Lemma

Definition 1.1. A partially ordered set (M,≤) is a set M equipped with a binary
relation ≤, called a partial ordering, satisfying

(a) x ≤ x for every x ∈M . (Reflexivity)

(b) If x ≤ y and y ≤ x, then x = y. (Antisymmetry)

(c) If x ≤ y and y ≤ z, then x = z. (Transitivity)

• The word “partially” is chosen because M may contain elements x, y such that
neither x ≤ y nor y ≤ x holds. Such pair of elements is said to be incomparable.

One example is M =
{
{1}, {2}, {1, 2}

}
, with set inclusion ⊆ as a partial ordering.

It is clear that {1} and {2} are not comparable.

• Analogously, x, y ∈M are comparable if x ≤ y or y ≤ x or both.

Definition 1.2.
(a) A chain C is a partially ordered set where every pair of elements is comparable.

(b) An upper bound (if it exists) of a subset W of a partially ordered set M is an
element u ∈M such that

x ≤ u for all x ∈ W. (1)

(c) A maximal element (if it exists) of a partially ordered set M is an element m ∈M
such that

if m ≤ x for some x ∈M, then x = m. (2)

In other words, there is no x ∈M such that m ≤ x but x 6= m.

If a maximal element exists for a totally ordered set/chain, then it must be unique;
this follows immediately since every pair of elements is comparable in a chain. Now, it
seems intuitive that a maximal element is also an upper bound. Unfortunately, this is
not always the case, as illustrated in the following example.

Example 1.3. Consider the set W =
{
∅, {1}, {2}, {3}, {1, 2}

}
with set inclusion ⊆ as

a partial ordering.

• The maximal elements are {1, 2} and {3}.

• On the other hand, if we view W as a subset of the power set of {1, 2, 3}, then the
upper bound of W is the element {1, 2, 3}.

• Here is what went wrong: (1) requires an upper bound u to be comparable with all
elements in W , while (2) does not. Another simple explanation is that an upper
bound might not be element of W .



We are now ready to formulate Zorn’s lemma and provide two applications of it.

Theorem 1.4 (Zorn’s lemma). Let (M,≤) be a non-empty partially ordered set. If every
chain C ⊂M has an upper bound, then M has at least one maximal element.

• Note the upper bound need not be an element of C, but it must be an element of
M .

Theorem 1.5 (Hamel basis). Every non-empty vector space X has a Hamel basis.

Proof. Let M be the set of all linearly independent subsets of X ordered by set inclusion
⊆. M is non-empty since

X 6= {0} =⇒ there exists a nonzero x ∈ X =⇒ x ∈M.

Every chain C ⊂ M has an upper bound, given by the union of all elements of C; by
Zorn’s lemma, M contains a maximal element B. We claim that B is a Hamel basis
for X. Suppose not, then there exists an z ∈ X \ B. The set Y = B ∪ {z} form a
linearly independent subset of X, containing B as a proper subset. This contradicts the
maximality of B.

�

Theorem 1.6 (Total orthonormal set). Every non-empty Hilbert space H has a total
orthonormal set.

Proof. Let M be the set of all orthonormal subsets of H ordered by set inclusion ⊆. M
is non-empty since

H 6= {0} =⇒ there exists a nonzero x ∈ X =⇒ x

‖x‖
∈M.

Every chain C ⊂ M has an upper bound, given by the union of all elements of C; by
Zorn’s lemma, M contains a maximal element F . We claim that F is total in H. Suppose
not, then there exists a nonzero z ∈ H such that z ⊥ F . The set Y = F ∪ {z/‖z‖} form
an orthonormal subset of H, containing F as a proper subset. This contradicts the
maximality of F . Note that completeness is required to appeal to the sufficient condition
for totality.

�

Remark 1.7. Observe that the proofs of Theorem 1.5, 1.6 shares the same steps. We
first construct a partially ordered set (M,≤) that possess certain properties depending on
the context, such that Zorn’s lemma is applicable. The maximal element, say, B, will be
a candidate of something we want to show; this is shown by constructing an element in
M that contradicts the maximality of B. The last step is usually the most difficult part.
We will see in the next section that the proof of the Hahn-Banach theorem follows exactly
this same approach.
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2 Hahn-Banach Theorem.

The Hahn-Banach theorem is one of the most fundamental result in linear functional
analysis. A simple but powerful consequence of the theorem is there are sufficiently
many bounded linear functionals in a given normed space X. Essentially, one construct
functionals with certain properties on a lower-dimensional subspace of X, then extend it
to the entire space X. By now, you should have seen several applications of the Hahn-
Banach theorem.

Definition 2.1. Given a vector space X, a sublinear functional is a real-valued func-
tional p : X −→ R satisfying

(a) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X. (Subadditive).

(b) p(αx) = αp(x) for all α ∈ R≥0 and x ∈ X. (Positive-homogeneous).

Theorem 2.2 (Hahn-Banach Theorem: Extension of linear functionals).
Let X be a real vector space and p a sublinear functional on X. Let f be a linear functional
defined on a subspace Y ⊂ X, satisfying

f(y) ≤ p(y) for all y ∈ Y.

Then f has a linear extension f̃ from Y to X satisfying

(a) f̃ is a linear functional on X,

(b) f̃ |Y = f , i.e. the restriction of f̃ to Y agrees with f ,

(c) f̃(x) ≤ p(x) for all x ∈ X.

Proof. The proof is different from the textbook, in the sense that in step (A) we define
the partially ordered set M as an ordered pair consists of a subspace of X and a linear
extension, whereas in step (C) we show how to choose δ by a “backward argument”, which
is more intuitive instead of starting on some random equations and claim the choice of δ
will get the job done. Following Remark 1.7, we split the proof into three parts:

(A) Let M be the partially ordered set of pairs (Z, fZ), where

i. Z is a subspace of X containing Y ,

ii. fZ : Z −→ R is a linear functional extending f , satisfying

fZ(z) ≤ p(z) for all z ∈ Z.

with the partial ordering (Z1, fZ1) ≤ (Z2, fZ2) if Z1 ⊂ Z2 and (fZ2) |Z1 = fZ1 . It
is clear that M is non-empty since (Y, f) ∈ M . Choose an arbitrary chain C ={

(Zα, fZα)
}
α∈Λ

in M , Λ some indexing set. We will show that C has an upper

bound in M . Let W =
⋃
α∈Λ Zα and construct a functional fW : W −→ R defined

as follows: If w ∈ W , then w ∈ Zα for some α ∈ Λ and we set fW (w) = fZα(w) for
that particular α.
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• This definition is well-defined. Indeed, suppose w ∈ Zα and w ∈ Zβ. If Zα ⊂ Zβ,
say, then fZβ

|Zα = fZα , since we are in a chain.

• W clearly contains Y , and we show that W is a subspace of X and fW is a
linear functional on W . Choose any w1, w2 ∈ W , then w1 ∈ Zα1 , w2 ∈ Zα2 for
some α1, α2 ∈ Λ. If Zα1 ⊂ Zα2 , say, then for any scalars β, γ ∈ R we have

w1, w2 ∈ Zα2 =⇒ βw1 + γw2 ∈ Zα2 ⊂ W.

Also, with fW (u) = fZα1
(u) and fW (v) = fZα2

(v),

fW (βu+ γv) = fZα2
(βu+ γv)

= βfZα2
(u) + γfZα2

(v)
[

linearity of fZα2

]
= βfZα1

(u) + γfZα2
(v)

[
since we are in a chain

]
= βfW (u) + γfW (v).

The case Zα2 ⊂ Zα1 follows from a symmetric argument.

• Choose any w ∈ W , then w ∈ Zα for some α ∈ Λ and

fW (w) = fZα(w) ≤ p(w) since (w,Zα) ∈M.

Hence, (W, fW ) is an element of M and an upper bound of C since (Zα, fZα) ≤
(W, fW ) for all α ∈ Λ. Since C was an arbitrary chain in M , by Zorn’s lemma, M
has a maximal element (Z, fZ) ∈ M , and fZ is (by definition) a linear extension of
f satisfying fZ(z) ≤ p(z) for all z ∈ Z.

(B) The proof is complete if we can show that Z = X. Suppose not, then there exists
an θ ∈ X \ Z; note θ 6= 0 since Z is a subspace of X. Consider the subspace Zθ =
span{Z, {θ}}. Any x ∈ Zθ has a unique representation x = z + αθ, z ∈ Z, α ∈ R.
Indeed, if

x = z1 + α1θ = z2 + α2θ, z1, z2 ∈ Z, α1, α2 ∈ R,

then z1 − z2 = (α2 − α1)θ ∈ Z since Z is a subspace of X. Since θ /∈ Z, we must
have α2 − α1 = 0 and z1 − z2 = 0. Next, we construct a functional fZθ

: Zθ −→ R
defined by

fZθ
(x) = fZθ

(z + αθ) = fZ(z) + αδ, (3)

where δ is any real number. It can be shown that fZθ
is linear and fZθ

is a proper
linear extension of fZ ; indeed, we have, for α = 0, fZθ

(x) = fZθ
(z) = fZ(x). Conse-

quently, if we can show that

fZθ
(x) ≤ p(x) for all x ∈ Zθ, (4)

then (Zθ, fZθ
) ∈M satisfying (Z, fZ) ≤ (Zθ, fZθ

), thus contradicting the maximality
of (Z, fZ).
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(C) From (3), observe that (4) is trivial if α = 0, so suppose α 6= 0. We do have a
single degree of freedom, which is the parameter δ in (3), thus the problem reduces
to showing the existence of a suitable δ ∈ R such that (4) holds. Consider any
x = z + αθ ∈ Zθ, z ∈ Z, α ∈ R. Assuming α > 0, (4) is equivalent to

fZ(z) + αδ ≤ p(z + αθ) = αp(z/α + θ)

fZ(z/α) + δ ≤ p(z/α + θ)

δ ≤ p(z/α + θ)− fZ(z/α).

Since the above must holds for all z ∈ Z, α ∈ R, we need to choose δ such that

δ ≤ inf
z1∈Z

[
p(z1 + θ)− fZ(z1)

]
= m1. (5)

Assuming α < 0, (4) is equivalent to

fZ(z) + αδ ≤ p(z + αθ) = −αp(−z/α− θ)
−fZ(z/α)− δ ≤ p(−z/α− θ)

δ ≥ −p(−z/α− θ)− fZ(z/α).

Since the above must holds for all z ∈ Z, α ∈ R, we need to choose δ such that

δ ≥ sup
z2∈Z

[
− p(−z2 − θ)− fZ(z2)

]
= m0. (6)

We are left with showing condition (5), (6) are compatible, i.e.

−p(−z2 − θ)− fZ(z2) ≤ p(z1 + θ)− fZ(z1) for all z1, z2 ∈ Z.

The inequality above is trivial if z1 = z2, so suppose not. We have that

p(z1 + θ)− fZ(z1) + p(−z2 − θ) + fZ(z2) = p(z1 + θ) + p(−z2 − θ) + fZ(z2 − z1)

≥ fZ(z2 − z1) + p(z1 + θ − z2 − θ)
= fZ(z2 − z1) + p(z1 − z2)

= −fZ(z1 − z2) + p(z1 − z2) ≥ 0.

where linearity of fZ and subadditivity of p are used. Hence, the required condition
on δ is m0 ≤ δ ≤ m1.

�
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3 Complex Hahn-Banach Theorem.

We begin by proving a lemma that gives us the relation between real and imaginary parts
of a complex linear functional.

Lemma 3.1. Let X be a complex vector space and f : X −→ C a linear functional. There
exists a real linear functional f1 : X −→ R such that

f(x) = f1(x)− if(ix) for all x ∈ X.

Proof. Write f(x) = f1(x) + if2(x), where f1, f2 are real-valued functionals. f1, f2 are
real-linear since for any x, y ∈ X and scalars α, β ∈ R we have

f1(αx+ βy) + if2(αx+ βy) = f(αx+ βy)

= αf(x) + βf(y)

=
[
αf1(x) + βf1(y)

]
+ i

[
αf2(x) + βf2(y)

]
.

Moreover, we also have

f1(ix) + if2(ix) = f(ix) = if(x) = if1(x)− f2(x)

=⇒ f1(x) = f2(ix) and f2(x) = −f1(ix).

=⇒ f(x) = f1(x)− if1(ix).

�

Theorem 3.2 (Complex Hahn-Banach Theorem). Let X be a real or complex vector
space and p a real-valued functional on X satisfying

(a) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

(b) p(αx) = |α|p(x) for all α ∈ C.

Let f be a linear functional defined on a subspace Y ⊂ X, satisfying

|f(y)| ≤ p(y) for all y ∈ Y.

Then f has a linear extension f̃ from Y to X satisfying

(a) f̃ is a linear functional on X,

(b) f̃ |Y = f , i.e. the restriction of f̃ to Y agrees with f ,

(c) |f̃(x)| ≤ p(x) for all x ∈ X

Proof. Observe that the result follows from Theorem 2.2 if X is real, so suppose X is
complex; this means Y is complex. Lemma 3.1 states that f(x) = f1(x)− if(ix), with f1

real-linear functional on Y . By the real Hahn-Banach Theorem 2.2, there exists a linear
extension f̃1 from Y to X. Setting f̃(x) = f̃1(x) − if̃1(ix), one can show that f̃ is in-
deed a complex linear extension of f from Y to X. We are left to show that f̃ satisfies (c).
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Observe that the inequality is trivial if f̃(x) = 0, since p(x) ≥ 0. Indeed,

0 = p(0) = p(x− x) ≤ p(x) + p(−x) = p(x) + | − 1|p(x) = 2p(x).

Suppose f̃(x) 6= 0. Writing f̃(x) = |f̃(x)|eiθ, we have

|f̃(x)| = e−iθf̃(x) = f̃(e−iθx) = f̃1(e−iθx) ≤ p(e−iθx) = |e−iθ|p(x) = p(x).

�

Remark 3.3. One could make a crude estimate on |f̃(x)| without appealing to polar
form, but it fails to deliver what we want since

|f̃(x)|2 = f̃1(x)2 + f̃1(ix)2 ≤ p(x)2 + p(ix)2 = 2p(x)2.
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